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Abstract

From the perspective of a decision maker with log utility, maximum
likelihood estimation [MLE] yields the best set of probabilities available
from the forecaster�s model, given the data in use. Of all the possible
estimates that the chosen model might have generated, MLE leads to
the probabilities (parameter values) that would have generated maximum
�nancial return to a "growth-optimal" (log utility) investor, had those
estimates been available and acted upon before the events in question.
Decision makers with other utility functions may be similarly well served.
A bootstrap experiment based on a representative set of corporate bank-
ruptcy data suggests that although MLE estimates are not always a good
proxy for probabilities estimated by maximizing another utility function,
the out-of-sample economic bene�ts of acting upon MLE estimates are
not easily improved upon by matching the estimation criterion to the
user�s utility function. In principle, MLE is widely justi�ed by the proven
asymptotic properties of its estimates. That MLE and other abstract sta-
tistical estimation criteria can be seen as inherently subjective (more or
less suited to di¤erent forecast users) is not commonly understood.
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1 Introduction

Financial decision makers obtain and condition their probabilities in ways that
are only partly understood, and not necessarily supported theoretically. One
of the more standard methods is to apply a probability forecasting model, such
as described in econometric forecasting textbooks. This is portrayed as an
impersonal or utility-free exercise, in that model estimation (�tting) relies on
objective measures of "goodness of �t" and does not involve a utility function.
It is possible, however, that certain estimation criteria, or rules of "best �t",
have greater a¢ nity or congruence with some users (utility functions) than with
others. The clearest instance of such insidious subjectivity arises in the case of
probabilities estimated by the method of maximum likelihood [henceforth MLE].
The �rst objective of this paper is to show that MLE-based probabilities,

such as used in bankruptcy prediction and other investment decision contexts,
are best suited theoretically to users with log utility. Whether in practice prob-
abilities estimated by MLE satisfy a broader class of investors, remembering
that log utility, otherwise known as "growth optimal" investment or "Kelly bet-
ting", is perceived by many as "too risky" (i.e. not su¢ ciently risk averse), is
a more di¢ cult question.1 The second part of this paper describes a bootstrap
exercise, using empirical bankruptcy prediction data, designed to test whether
users with di¤erent utility functions (decision rules) might bene�t economically
from customized non-MLE goodness-of-�t criteria.

1.1 MLE-Based Bankruptcy Probabilities

What is the probability pi = pr(Yi = 1jXi) of an arbitrary business entity,
�rm i, characterized by a vector of observables Xi = fXi;1; Xi;2; ::: ; Xi;kg,
obtaining a state Yi = 1 of bankruptcy, insolvency or other default, prior to
some given date t? This is a recurrent question, formalized by Ohlson (1980),
and lately institutionalized within the �nancial governance framework of the
Basel II capital accord (cf. Du¢ e et al. 2007, pp.636-7).
Empirical studies in bankruptcy, credit risk, debt ratings and related appli-

cations utilize most of the established families of probability forecasting mod-
els, including particularly logistic regression (Ohlson, 1980), hazard models
(Shumway, 2001), mixed logit (Jones and Hensher, 2004) and the more recent
dynamic time series model of Du¢ e et al. (2007). While the philosophical an-
tecedents and speci�c assumptions of such roundly di¤erent models are partly
contradictory, the technique by which they are most often �tted is generally
uncontested. This is the method of maximum likelihood, or, in short, the rule
of estimating model parameters such that the data set Y i = fY1; Y2; ::: ; Yng
observed is attributed maximum possible probability ex ante conditional on (i)
the model and (ii) the explanatory variables Xi;j selected.
Maximum likelihood estimation was formulated and �rst described as such

by R.A. Fisher (1921). In textbook expositions of the classical (frequentist)

1References include Li (1993, p. 915), MacLean et al. (1992, p.1564; 2004, pp.938,.941).
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theory of point estimation, MLE is sometimes introduced as a "natural" or
even axiomatic method of estimation. More conventionally, MLE-based point
estimates are justi�ed not merely by their intuitive appeal, but by their proven
long-run frequentist properties, including unbiasedness or at least consistency,
asymptotic e¢ ciency and asymptotic normality (see Lehmann (1983) for further
detail).2

When used to �t probability forecasting models in bankruptcy and related
applications, the principle of MLE rarely attracts comment. It comes as a
surprise, therefore, that probabilities estimated by MLE (whatever family of
models is assumed) have an implicit and apparently unannounced economic ra-
tionale � namely, to best represent the purposes of a forecast user (i.e. decision
maker) with log utility, log(W ) of wealth W . More speci�cally, MLE produces
the combination of probability estimates, p = fp1; p2; ::: ; png, over the sample
�rms i 2 f1; 2; ::: ; ng, that, among all the possible values of p obtainable by
altering one or more of the model�s parameters, would have produced maximum
wealth W ex post (and thus also maximum utility) had the various predictions
p1; p2; ::: ; pn contained in p been acted upon ex ante by a rational decision
maker with utility function log(W ) (or any linear transform thereof).
In the context of bankruptcy or other default, and typical of nearly all port-

folio optimization problems, exogenous determinants of investment performance
include (i) the security prices ex ante and ex post of the �rms being considered,
and (ii) the set of alternative investment opportunities available to the decision
maker over the time period or periods in question. Remarkably, neither makes
any di¤erence. On the contrary, taking the model and observation set Xi as
given, it can be shown, under the assumptions of zero transaction costs and in-
dependent investment alternatives (multiplicative asset prices), that, regardless
of (i) and (ii), the probability vector p estimated using MLE could not have
been improved upon from the ex post perspective of a log utility investor. This
presumes of course that the probabilities p1; p2; ::: ; pn represented by p are
acted upon ex ante without further conditioning, as if adopted at that time as
the decision maker�s personal beliefs.
MLE is regarded widely as "objective" or utility-free, however the duality

demonstrated in this paper between MLE and decision making under log utility,
suggests otherwise. Probability estimates that suit one decision maker, with one
particular utility function, can greatly disadvantage another. For instance, log
utility agents are known to be severely disa¤ected by overstated probabilities,
and relatively much less handicapped by understated probabilities (e.g. Thorp
HHHH, Ziemba(?), Luenberger ???; pp.RRR; Stutzer 2003, pp.366-9).
By comparison, if we assume market betting odds in favor of bankruptcy of

2The history of MLE is set out by Aldrich (1997), Jaynes (2003) and Stigler (2007). For
comparison of the place of maximum likelihood within Bayesian and classical inference philoso-
phies, see Berger (1984, pp.121-41), Jaynes (2003, pp.175-7) and Howson and Urbach (1993,
293-4). Bayesian theory has no concept of MLE except in the elliptical sense that the likeli-
hood function (the mode of which occurs at the frequentist MLE estimate) is, by corollary of
Bayes�theorem, an evidentially exhaustive summary of the data, and combines with the user�s
prior distribution to produce a posterior probability distribution over all possible parameter
values.
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 = �i=(1��i), where let us say 
 = 1; a risk neutral investor is not a¤ected by
whether the estimated probability pi is 0.51 or 1, or anywhere in between, since
he wagers his entire bankroll on the same prospect either way. More generally, all
that a risk neutral agent requires is a categorically correct probability estimate,
meaning one on the "right side" (ex post) of the corresponding odds-implied
market probability, �i: The same may be true of other highly risk tolerant
investors.
At the other extreme, intensely risk averse investors may wager so little when

the forecast probability is near �i that the wealth gained or lost is immaterial,
irrespective of how many misclassi�cations the model makes. On their account,
little might be gained out of a model with even zero "misclassi�cations". To
be more pro�table, such highly risk averse decision makers require "accurate"
probabilities in a sense not captured by counting misclassi�cations. In particu-
lar, they will not be aided by a model �tted so as to minimize misclassi�cations
when those probability estimates on the wrong side of �i are often near 0 or 1.
Such errors may prompt large, and perhaps catastrophic, losing bets.3

2 Background

Perhaps because of their origins in the works of predominately Bayesian theo-
rists, see particularly de Finetti (1937, 1962, 1965, 1970, 2008), Good (1952),
and Savage (1954, 1971), scoring rules are remarkably little known, even among
professional statisticians. The most obvious exception to this clearly simplis-
tic generalization occurs in meteorology, where probability scoring has a rich
history dating at least to Brier (1950). In bankruptcy, explicit applications of
scoring rules began with Lau (1987, p.135) but remain uncommon.4 The more
conventional ways of model evaluation are by counting numbers of misclassi�-
cations, often based on an arbitrary probability threshold such as 0.5, and by
measuring an "accuracy ratio" or area under the model�s ROC curve (see, for a
good example, Du¢ e et al., 2007). In other economic forecasting environments,
applications of scoring rules have become more common. References include
Garratt et al. (2003), Lopez 2001 McKelvey and Page 1990, Onkal et al. 2003,

3This is why professional forecasters are inclined to "hedge" by reporting a probability
closer to 0.5 or to the "climatological" (or "objective prior") probability than their true belief
(cf. Johnstone 2007, Lichtendahl and Winkler 2007, and Ottaviani and Sorensen GGGG).
"Climatological probability" is a term used generically for the observed long-run relative
frequency of the event in question (Clemen and Winkler 1990, p.772). For example, in weather
forecasting, the climatological probability of rain on a given day might be 9% or 0.09 for a
certain location in a certain month of the year.

4 In accounting, Scott (1979) and Gonedes and Ijiri (1974) introduced and made much of
probability scoring rules. Yet, more recently, Hillegeist et al. (2004, p.19) suggested that
"calibration", which is not the same property as "accuracy" and is not measured by a score
function, is the one formal measure of the quality of probability assessments ex post. This
would suggest that scoring rules remain unfamiliar in the accounting research literature. More-
over, it is well known that good calibration is not su¢ cient, since (perfectly) well calibrated
probabilities can still be highly inaccurate (e.g DeGroot and Feinberg (1983, p.14). For ex-
ample, a stock analyst who quotes 0.55 as his probability of any stock price increasing on any
day will be close to perfectly calibrated over the long run.
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Partington et al. (2005), Thomson (2004) et al. Muradoglu and Onkal (1994),
Yates et al. (1991), O¤erman et al. (2009) etc etc. Another fundamental devel-
opment is the implementation of scoring rules as criteria for rewarding traders
and setting bid and ask prices in probability prediction markets (e.g. Hanson
2003; Pennock 2004)

2.1 Probability Scoring Rules

Scoring rules are functions by which to measure the "accuracy" of a probability
estimate ex post. Their most extensive use has been in meteorology, where
predictions are often quoted in terms of probabilities (e.g. pr(Rain) = 0:15)
rather than in more categorical or qualitative forms (e.g. "Fine with chance of
showers"). Important references include Winkler (1969), Murphy and Winkler
(1970, 1992) and Lindley (1982). Dawid (1986), O�Hagen (1994) and Winkler
(1996) summarize the literature, and Bernardo and Smith (1994), Cover (IEEE
Transactions paper), Roulston and Smith (2002), Daley and Vere-Jones (2004),
Gneiting and Raftery (2007) and Jose et al. (2008) present important theoretical
syntheses of scoring rules and related concepts from information theory.
The use of scoring rules is best explained by example. Consider an event Yi

with two possible outcomes Yi = 1 (bankrupt) and its complement Yi = 0 (not
bankrupt). A model is used to predict the outcome of this event in the form of
a probability pi = pr(Yi = 1jXi). The information Xij utilized by the model is
not at issue, nor is the type or form of model selected. All that matters is the
accuracy of the end result, pi, as can be measured only after the event.
Two possible probability score functions are illustrated. These are the con-

ventional "Brier score" or quadratic score, in raw form

s(pi ; Yi) = �(Yi � pi)2 =
(
�(1� pi)2 if Yi = 1

�p2i if Yi = 0;

and the similarly well known logarithmic or "log score",

s(pi ; Yi) = logfYi pi + (1� Yi)(1� pi)g =
(
log(pi) if Yi = 1

log(1� pi) if Yi = 0:
(1)

Note that both functions imply a perfect score of zero, achieved when either
pi = Yi = 1 or pi = Yi = 0. For less than perfect forecasts, both scores are
negative. Perfectly bad scores are �1 for the Brier and �1 for the log score.
These are two of many plausible score functions (Jose et al., 2008). There

is much discussion in the probability forecasting literature of what makes an
appropriate score or measure of "accuracy" of a probability (e.g. Selton, 2007).
Until recently, however, there has been little recognition of what di¤erent prob-
ability score functions re�ect in terms of the potential (latent) economic value
of the forecasts being scored (excepting Murphy, 1966).
The only generally agreed characteristic of a good scoring rule is that it

is "strictly proper". This requires that the forecaster�s (or model�s) expected
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score,
E(s(gi ; Yi)jpi) = pi s(gi; 1) + (1� pi) s(gi; 0);

achieved by a nominal probability prediction gi, conditional on an actual or
"honest" probability assessment pi, is maximized only when gi = pi. While
inducement of forecast honesty seems desirable prima facie, its e¤ect on the
economic performance of a decision maker who relies on the reported probabili-
ties when choosing whether, and how much, to invest is not clear, and is unlikely
to be favorable under all conditions. For example, an inherently over-con�dent
forecaster may be induced by a proper score function to report probabilities near
0 or 1, which, if often (or even occasionally) inaccurate, will be highly costly to
a user who acts on them as his own.

2.2 MLE in Terms of the Log Score

Consider a probability prediction model such as the common logistic function

pi = pr�(Yi = 1jXi) =
e�X

1 + e�X
; (2)

�tted with a vector of parameters � = f�1; �2; ::: ; �kg. On the usual assump-
tion in logistic regression and similar models of independent or conditionally
independent probabilities pi, the estimated joint probability of the observed
data Y i = fY1; Y2; ::: ; Yng, usually called the likelihood function, is

l(Y j�) =
nY
i=1

pYii (1� pi)1�Yi ; (3)

with Yi 2 f0; 1g for all i. The principle of MLE is to �nd the parameter set
�MLE = argmax fl(Y j�)g that maximizes the product (3). Equivalently, and
more conveniently, � is estimated by maximizing the log likelihood function

L(Y j�) = logfl(Y j�)g =
nX
i=1

log(�i); (4)

where �i is the model�s ex ante probability of the outcome Yi known (after the
event) to have occurred in the case of �rm i (for all i = 1; 2; ::: ; n),

�i = p
Yi
i (1� pi)1�Yi =

(
pi if Yi = 1

(1� pi) if Yi = 0:

Note that the log likelihood function (4) is simply the sum of the log scores
(1) of all the model�s individual probability predictions, p1; p2; ::: ; pn. MLE
can be described, therefore, as the principle of selecting the probability fore-
casting model that achieves the highest aggregate log score over all n sample
observations.
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The notion that a probability forecasting model can be �tted by optimizing
an appropriate score function s(pi ; Yi), such as the Brier or log score, or any
other strictly proper score function, is apparently very recent. Gneiting and
Raftery (2007, p.375) call this "optimum score estimation" and note that the
appeal of this estimation framework lies in "the potential adaption of the scoring
rule to the problem at hand". They further observe (p.375) that "[m]aximum
likelihood estimation forms the special case of optimum score estimation based
on the logarithmic score" (this was �rst observed by Winkler 1969, pp.1076-
7). In spirit with the Gneiting-Raftery proposal, this paper exposits MLE as a
form of optimum score estimation tailored implicitly to a user (economic decision
maker) with log utility.

3 Likelihood as a Measure of Value

Recent papers by Roulston and Smith (2002), Daley and Vere-Jones (2004),
Johnstone (2007) and Jose et al. (2008) have emphasized parallels between
the conventional log score, various related measures of information, entropy
or "distance" between probability distributions, and the success of bets based
on the probability distributions in question. It is assumed for the purposes of
such comparisons that the decision maker can express his personal probabilities
(or those produced by a model) in the form of bets, either at �xed market
odds (as quoted by a bookmaker) or in a parimutuel betting market. The only
requirement of either market is that there is no commission or bid-ask spread,
meaning that the betting odds available on one possible outcome, say Yi = 1,
are simply the reciprocal of those available on the complementary event, Yi = 0
(or, put another way, that the odds-implied probabilities of the two possible
events sum to one).
In the case of bankruptcy, there is generally no associated betting market.

There exists, however, a simple analogy between bets and investments, particu-
larly investments in assets such as corporate bonds that may default and return
nil of the investor�s initial outlay. Once this connection is made explicit, the
economic attributes of MLE-based probabilities can be described in either the
succinct and picturesque language of professional gamblers, or, equivalently, in
more conventional terms from �nance and economics.

3.1 Betting on Bankruptcy

It is important to identify the formal correspondence between investment and
betting, if for no other reason than to clarify what most traders and fund man-
agers suspect intuitively � that investment and betting at a rational level are
the same information-dependent pro�t-driven activity.5

5Gambling and �nancial markets di¤er in substance in essentially two parameters. The
�rst is the long run rate  at which "informed" players siphon money away from "uninformed"
players (cf. Asche et al., 1982). In roulette  = 0, since no one has an information advan-
tage, whereas in horse racing, the same perhaps as in the stockmarket,  may be very high,
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A conventional bet of amount � on an outcome Yi = 0, against the com-
plementary outcome Yi = 1, is de�ned as an outlay that returns a gross payo¤
equal to � multiplied by a factor�

0 if Yi = 1
� > 1 if Yi = 0:

For example, a bookmaker may quote a "price" of � = 1:91 on Connors to
beat Borg. A gambler who bets � on Connors will be returned 1:91� if indeed
Connors wins and zero if Borg wins. The win multiple � is always greater than
one because it includes the dollar wagered.
In conventional bookmaking terms, the gross payo¤ (per $1 bet) �1 from a

successful bet on Yi = 1 equals�
1 +

1


1

�
= 1=qi;

where 
1 = qi=(1 � qi) represents the odds "in favor" of outcome Yi = 1 and
qi is the odds-implied probability of Yi = 1. In the absence of any bookmaker
commission (bid-ask spread), the reciprocal of 
1 represents the odds in favor
of Yi = 0 (odds against Yi = 1) and the odds-implied probability of Yi = 0 is
1� qi.6
Bets can be replicated with investments, and vice versa, as follows. Imagine

a binary asset representing the stock in a company that will be either bankrupt
(Yi = 1) or not bankrupt (Yi = 0) by period end. The current stock price is Si
(whether buying or selling) and period end stock price will be either SYii = S1i
(Bankrupt) or SYii = S0i (Not Bankrupt), where S

1
i < S < S

0
i .

Adapting the method of binary option pricing of Cox and Ross (1976) to
bets, which are "contingent claims" just like options, an investment position
short one unit in the underlying stock is replicated by a portfolio containing
�S0i =(1+ r) (a short position) in risk free bonds together with a bet of amount
S0i =(1 + r)� Si = [S0i � Si(1 + r)]=(1 + r) on Y = 1 (bankruptcy) at payo¤

�1 =

�
1 +

1


1

�
(1 + r) =

S0i � S1i
S0i � Si(1 + r)

(1 + r) =
(1 + r)

qi
; (5)

particularly over a sequence of "insider" trades. The other important parameter is �, the
rate of growth in the pool of funds available for distribution ex post to the players (informed
and uninformed). In gambling, � is negative since the payout pool is just the sum of all the
bets minus whatever commission is taken by those conducting the market (e.g. the casino
or the operators of a parimutuel betting pool). In the stockmarket, � is historically positive
(thanks of course to the value added by managers and employees, borrowed capital, Govern-
ment subsidies and so on). From the viewpoint of an uninformed player, positive � makes the
stockmarket more appealing at a rational level than the casino (a random selection of stocks
can be expected to yield a positive return if held long enough). An informed player sees no
such qualitative distinction. If she has a systematic information advantage, her expected long
run growth factor (1 +  )(1 + �) may far exceed 1 (zero growth) in either marketplace.

6Where there is a spread, the odds-implied probabilities of Y = 1 and Y = 0 sum to (1+")
> 1 where " is called the over-round or "vig" (short for vigorish).
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where 
1 = qi=(1� qi) represents the risk neutral odds in favor of Yi = 1, and
the corresponding risk-neutral probability of Yi = 1 is

qi =
S0i � Si(1 + r)
S0i � S1i

: (6)

The gambler�s net outlay is then �Si, meaning that he receives amount Si,
the same as if he had sold one unit of underlying asset, and the total value of
his portfolio of bonds-plus-bet at period end is �S0i in the case of Yi = 0 and
�S1i in the case of Yi = 1. This exactly replicates the short sale of one unit of
the underlying asset.7

Similarly, a position long one unit in the underlying stock is replicated by a
portfolio containing S1i =(1+ r) in risk free bonds together with a bet of amount
Si � S1i =(1 + r) = [Si(1 + r)� S1i ]=(1 + r) on outcome Yi = 0 at payo¤

�0 =

�
1 +

1


0

�
(1 + r) =

S0i � S1i
Si(1 + r)� S1i

(1 + r) =
(1 + r)

1� qi
; (7)

where 
0 = 1=
1 = (1 � qi)=qi represents the "risk neutral" odds in favor of
Yi = 0 (not bankrupt). The gambler�s net outlay is then Si, and the total value
of his portfolio of bonds-plus-bet at period end is S0i in the case of Yi = 0 and
S1i in the case of Yi = 1, exactly the same as if he had bought one unit of the
underlying stock.
An intuitive understanding of betting against a "risk-neutral probability" is

to imagine that a winning bet is rewarded for its holding cost as well as for its
winning. The gambler is �rst credited with the risk-free interest rate on the
amount wagered over the holding period of the bet. If, for example, he bets
on the �rm�s survival by purchasing one unit of the stock, then he is credited
with having earned interest of Sir over the period. His winning bet is then of
total amount Si(1 + r), and is treated as occurring instantaneously at period
end. At that moment, he receives a total payout of S0i , implying e¤ective or
"risk-neutral" betting odds of 
0 = (1� qi)=qi, where qi is de�ned by (6). For
mathematical consistency, a losing bet should also be regarded as earning the
risk-free rate over the holding period, but since this bet is lost so is the accrued
interest.
An apparent de�ciency of this depiction of investment-as-betting is that the

two possible ex post stock prices S0i and S
1
i are unknown ex ante. Importantly,

however, this does not prevent rational betting, particularly log-utility betting.
First, it is reasonable to set S1i = 0, on the simplifying assumption that stock
in a bankrupt �rm is worthless, or "out of the money", just like a losing bet.
And second, as in any parimutuel betting market,8 rational bets can be made

7A practical way to bet on bankruptcy (to hold the equivalent of B securities) is to buy
what are known as digital or binary default swaps, that payout in the event that the named
�rm defaults. See for example Lando (2004, p.198).

8 In a parimutuel betting market, the �nal payout � on a winning $1 bet is given by the
total betting pool divided by the number of $1 bets on the winner (assuming no commission).
The well known Kyle (1985) model in market microstructure is parimutuel.
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either by assuming a probability distribution for S0i , or by adopting a decision
rule whereby the assumed value of S0i makes no di¤erence to the amount bet.
Interestingly, as shown below, a Kelly bettor or investor with log utility makes
the same bet (takes on the same investment portfolio) whatever the assumed
value of S0i . Remarkably, therefore, it makes no di¤erence to him that S0i is
unknown ex ante. This was one of the unexpected results demonstrated by
Kelly (1956).
A second possibility is that the security prices are those of unsecured bonds

issued by the company in question. If these securities have say $100 face value
(and no coupon) and expire at period end (thus matching the time horizon
of the probability forecasting model) then their ex post value in the case of
bankruptcy is S1i = 0 (or at least very close to zero) and in the case of solvency,
S0i = 100. Under these simplifying assumptions, selling (buying) bonds at ex
ante price Si is equivalent to making �xed-odds bets on the event of a bankrupt
(not bankrupt) �rm at period end, where qi = (100 � Si(1 + r))=100 (e.g. if
the current bond price is Si = 75 and r = 0, qi = 0:25 and the e¤ective �xed
market betting odds are 3 to 1 against bankruptcy).

3.2 Log Optimal (Kelly) Betting

A Kelly (log utility) gambler with ex ante wealth W bets on a discrete binary
event Yi 2 f1; 0g: His personal probabilities of Yi = 1 and Yi = 0 are pi and
(1 � pi) respectively. The risk-neutral betting odds in favor of Yi = 1 are

1 = qi=(1 � qi). There is no commission or breakage and hence the risk-
neutral odds in favor of Yi = 0 are 1=
1. Following Kelly (1956, p.922), the
gambler bets a �xed proportion  of his wealth on Yi = 1 and the remainder
(1 � ) on Yi = 0. Because there is no commission, these bets are partly self-
cancelling, meaning that there is implicitly a proportion of the gamblers initial
wealth that remains unbet and invested at the risk-free rate r.
The gambler�s expected utility after trial i is

pi log[W (
1 + r

qi
)] + (1� pi) log(1� )W (

1 + r

1� qi
)

= log[W (1 + r)] + pi log

�


qi

�
+ (1� pi) log

�
1� 
1� qi

�
:

Di¤erentiating with respect to  leads to a maximum such that

pi

� (1� pi)

1�  = 0;

giving  = pi and (1� ) = (1� pi): It follows, therefore, that a Kelly gambler
or log optimal investor allocates his initial wealth W , whatever its amount, to
bets on Yi = 1 (bankrupt) and Yi = 0 (not bankrupt) in proportions matching
his subjective probabilities of those events, pi and (1 � pi), regardless of the
available betting odds.9

9See Luenberger (1998, pp.419-25) for the �rst mainstream-in-�nance textbook treatment
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In principle, therefore, Kelly betting in a frictionless (zero commission) com-
plete market is very straightforward. If there is a binary security B that pays
$1 in the case of Yi = 1 and zero in the case of Yi = 0, and a matching security
not-B that pays $1 in the case of Yi = 0 and zero in the case of Yi = 1, then a
Kelly bettor with personal probability pi = pr(Yi = 1) = 0:6 and capital of say
$100 simply buys $60 worth of B and $40 worth of not-B. The unit volumes of
these trades depend on the two security prices, which by the principle of no ar-
bitrage must add up to 1, or 1=(1+r) if there is a holding period. Alternatively,
if only the B securities are traded, then the Kelly strategy is to buy $60 worth
of these while at the same time selling 40=(1 � P ) units of the same security
where P is the security price. In net terms, the Kelly gambler must therefore
buy 60=P � 40=(1�P ) units, meaning 250 units when for example the security
price is P = 0:2. Similarly, if P = 0:75, he must buy �80 units, or, that is, sell
80 units.10

Note again that this strategy arises without reference to the implied betting
odds. The only assumption is that the two securities, B and not-B, are priced
according to the same risk-neutral probability distribution, so as to leave no
arbitrage opportunities, or no "Dutch book" in the words used by decision the-
orists (e.g. Savage HHHH, Lindley RRRR, de Finetti KKKK, DeGroot YYYY).
Their respective risk-neutral betting odds are then reciprocals, 
1 = 1=
0.

3.3 Kelly Betting and Maximum Likelihood

MLE is used to estimate p = fp1; p2; ::: ; png, where pi represents the probability
of result Yi = 1 in trial i. The investor employs these probabilities to make Kelly
(log utility) bets over the n trials observed, in whatever combination is optimal
under that decision rule. It is common in bankruptcy prediction models, that all
n trials in the sample occur simultaneously, rather than sequentially, in which
case bets have to be made together (in portfolio) rather than one after the other.
Grant et al. (2008) examine the problem of simultaneous Kelly-betting and

demonstrate several results relevant here. It is assumed that the market is
complete, thus allowing the investor to trade an Arrow-Debreu type security
that pays $1 in the event of any chosen intersection of outcomes

T
i2M yi, where

yi 2 f0; 1g is the gambler�s designated value of Yi, I = f1; 2; ::::; ng and M � I
is a subset of trials of size m � n. For instance, the investor can buy or sell a
security that pays $1 in the state of (say) �rms i = 2 and i = 4 going bankrupt,
and i = 9 not going bankrupt, s = fYi : Y2 = 1; Y4 = 1; Y9 = 0g, and

of Kelly betting. In e¤ect, Luenberger�s text presents �nance theory as an over-riding math-
ematical theory of gambling.
10The same e¤ect could be achieved practically by buying $60 of call options (or of stock)

while also buying $40 of put options with a very low strike price (both expiring at period
end). If the �rm goes bankrupt the call options are out of the money (the $60 is lost) but the
$40 is a winning bet and pays out at the corresponding risk-neutral odds. Similarly, if the
�rm survives, the puts are out of the money but the $60 wins at the reciprocal risk-neutral
odds. Note that because the options are priced according to a given risk-neutral probability
distribution, and the bid-ask spread is negligible (lets assume), the implied betting odds are
very close to reciprocals.
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pays zero in any other state. With this bet, the outcomes Yi for i 6= 2; 4; 9
make no di¤erence. Gambles of this description are called m-multis, partly for
convenience but mainly because they pay only when all m designated results
occur in conjunction.11

It is also assumed that the bookmaker or betting exchange (securities mar-
ket) treats all n discrete events Yi as independent, or conditionally independent
given the available information. This assumption is implicit within the usual
likelihood function (3). Assuming independence, the commission-free payout
(per $1 bet) on a winning m-multi is

�s = (1 + r)
m 1Q
i2M

�i
(8)

where

�i = q
Yi
i (1� qi)1�Yi =

(
qi if Yi = 1

(1� qi) if Yi = 0

is the market (risk-neutral) probability of the event Yi realized in trial i. For
example, if the market probabilities of �rms i = 2; i = 4 and i = 9 going
bankrupt are q2 = 0:2 and q4 = 0:5, and q9 = 0:2, then the payout (per $1 bet)
on a successful 3-multi on the conjunction s = fYi : Y2 = 1; Y4 = 1; Y9 = 0g is
�s = (1+r)

3(1=q2))(1=q5)(1=(1�q9)) = 5�2�1:25 = 12:50 (with r = 0). Note
that �i is the bookmaker�s risk-neutral equivalent of the investor�s probability
assessment �i, implying that a successful bookmaker will generally have �i >
�i(1 + r) over i = 1; 2; ::: ; n.
Based on the assumptions of independent events and no commissions, Grant

et al. (2008, pp.14-16) demonstrate that it makes no di¤erence under log utility
betting whether bets are made simultaneously or sequentially, in any arbitrary
sequence (or in any combination of simultaneous and sequential bets). The same
�nding holds for any utility function under which the optimal bet in each trial i
is a �xed fraction of wealthW regardless of the amount ofW . This includes not
only Kelly betting, or log utility, but any of the broad family of power utility
functions. It also includes so-called fractional-Kelly betting, where the gambler
bets a constant preset fraction (e.g. 50%) of the full-Kelly bet in each trial.12

That log optimal bets made simultaneously or sequentially (at the same
multiplicative odds) produce the same monetary outcome (and hence utility) is
a highly convenient result. It allows the economic consequences of log optimal
betting upon a set of probabilities p, produced by a forecasting model, to be
equated directly to the observed value of the likelihood function, and thus a¤ords

11Compound bets such as this are known in Britain as "accumulators", in the US as "par-
lays", and in Australia as "multi-bets" (http://www.multibet.com). They are available only
on trials that the bookmaker regards as independent, such as two di¤erent football games,
but not on dependent events such as Connors winning both the semi-�nal of Wimbledon and
the �nal.
12This is a standard decision rule in professional gambling; see for example Thorp XXXX

and Ziemba RRRR (40% or 50% Kelly is widely advocated for its compromise between high
expected growth and low volatility of returns).
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the likelihood function an economic meaning that is not well known, and may
not be intended or desirable.
To formalize this interpretation of the likelihood function, consider a se-

quence of single-event bets ("1-multis") over trials i = 1; 2; ::: ; n, each trial
producing outcome Yi 2 f1; 0g. In making each bet, the investor acts on the
basis of a probability pi = pr(Yi = 1jX) produced by the chosen model, and
estimated using MLE. The risk-neutral betting odds in trial i, in favor of out-
come Y = 1, are 
 = qi=(1� qi); and hence a Kelly-bettor multiplies his wealth
in trial i by a factor

h(pi; Yi; qi) = (1 + r)
�i
�i
=

�
(1 + r) pi=qi if Yi = 1
(1 + r) (1� pi)=(1� qi) if Yi = 0;

(9)

After completing all n discrete bets, an investor with log utility increases his
initial wealth W0 by factor

nY
i=1

h(pi; Yi; qi) = (1 + r)
n l(Y j�)

nQ
i=1

�i

; (10)

where l(Y j�) is the observed sample value of the likelihood function. It follows,
therefore, that the estimated model parameters � yielding maximum likelihood
l(Y j�); conditional on the model and sample X in use, are those which (of all
possible parameter estimates �) would have led a log utility investor to maximize
his return from betting over that set of trials based on that model�s probability
estimates p = fp1; p2; ::: ; png.
To out-predict the market in any given trial i, and hence pro�t from the bet

after discounting at the risk-free rate r, the investor must have �i > �i. For
example, if the market placed ex ante risk-neutral probability 0.5 on the event
seen to occur, and the investor gave this event personal probability 0.4, then his
wealth (discounted at rate r) would have been multiplied by 0.8 (i.e. 20% of his
capital would have been lost). This seems a rather large loss given how close the
market and investor were in their rival probability assessments, underlining the
inherent "high risk" of the log utility betting rule, and thus again begging the
question of whether a method of estimation that implicitly defers to log utility
is appropriate.
There is one other conceptual aspect to the interpretation of l(Y j�) as a

measure of the investment potential of a probability prediction model from the
standpoint of a log optimal investor (Kelly bettor). In short, provided that all
investment alternatives related to the Yi events are treated by the market as
mutually independent and also independent from all other unrelated investment
alternatives (e.g. betting on sports or whether it will rain tomorrow), the bank-
ruptcy prediction model with the highest likelihood l(Y j�), or equivalently log
likelihood L(Y j�), is the model or parameter set � which a log utility investor
would (in retrospect) have most wanted to bet upon. Under these assumptions,
the investor�s ex post wealth is still given by (10), but with the addition of one
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more multiplicative term, capturing the factor by which wealth is increased by
taking up a log optimal portfolio of those further investment opportunities.
Note that the log of the trader�s capital growth factor (10), representing

his gain in log utility log(Wn) � log(W0) from Kelly-betting over trials i =
1; 2; ::: ; n, based on p, can be written in terms of the di¤erence between his
aggregate log score and the aggregate log score of the market

log
nY
i=1

hi =
nX
i=1

flog(�i)� log(�i)g = L(Y j�)�
nX
i=1

log(�i); (11)

where L(Y j�) represents the observed log likelihood of the model (and letting
r = 0). This further clari�es the duality between extensibly "statistical" mea-
sures of the accuracy of a set of probability forecasts, namely the log score
and the log likelihood L(Y j�), and the economic returns accruing to a decision
maker who bets in each trial i according to a log utility function.

4 Bootstrap Economic Returns from MLE

Granger and Pesaran (2000a; 2000b) distinguish between conventional measures
of forecast accuracy, such as the Brier score, log score or number of misclassi-
�cations, and economic measures such as, for example, the terminal wealth of
an investor who switches between bonds and stocks on the basis of a time se-
ries of probability forecasts. They argue that ultimately it is economic criteria
that matter since forecasts exist not merely for their statistical accuracy in
some theoretical sense, but as a basis for better decisions as proven by better
outcomes.13 This instrumentalist perspective on forecast quality is widely en-
dorsed in �nancial forecasting and forecast evaluation (e.g. Leitch and Tanner
1991; 1995; Pesaran and Timmerman 1994; 1995). In the case of probability
forecasts, there are demonstrable parallels between abstract notions of forecast
accuracy, as captured by particular scoring rules, and (hypothetical) economic
outcomes. Recent results proven by Jose et al. (2008) suggest that within the
broadly inclusive class of power utility functions, there are speci�c families (e.g.
quadratic and exponential utilities) that are the mathematical duals of known
or identi�able probability scoring rules.
The issue then is whether it might assist forecast users with utility functions

apart from log(W ) if models were estimated using criteria other than that of
maximizing the aggregate log score (4), as required by MLE. To test for this pos-
sibility empirically, a simulation study is conducted based on repeated sampling
from a representative set of corporate bankruptcy data. The aim of the experi-
ment is to examine whether hypothetical investments (bets) are more successful
when based on MLE-based probabilities or on probabilities estimated using an
13 . . . forecasts are made for a purpose and the relevant purpose in economics is to help

decision makers improve their decisions. It follows that the correct way to evaluate forecasts
is to consider and compare the realized values of di¤erent decisions made from using alternative
sets of forecasts. (Granger and Pesaran 2000a, p.537).
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alternative utility or score function, chosen to represent the ends of decision
makers with decidedly greater risk aversion than log-utility agents (who implic-
itly act in the way of Kelly (1956) so as to maximize their expected long run
capital growth rate, and hence risk large fractions of capital relative to typically
more risk averse investors).
The results of this experiment, reported below, suggest that estimation pro-

cedures customized to suit the personal risk aversions of individual investors
may not lead to better decisions, as proven by better (higher average utility)
returns distributions, across a wide spectrum of risk aversions.

4.1 The Experiment

This experiment reveals that although probabilities estimated by MLE are not
always a good proxy for estimates obtainable by "optimum score estimation"
under utility functions other than log(W ), the out-of-sample economic bene�ts
from acting upon MLE estimates may remain. The data employed is a rela-
tively large sample of bankruptcy-related observations drawn from �rms listed
on the Australian Stock Exchange (ASX) over the period 1993-2003.14 To keep
the experiment as simple as possible while also maintaining some level of prac-
tical realism, the prediction model estimated is a conventional binary logistic
regression containing �ve regressors. For the sake of illustration, rather than to
seek out the "best" possible model, the �ve explanators are familiar account-
ing variables, �rst advocated as a relevant composite of �rm-speci�c factors by
Altman (1968).15 The model is thus as per the standard form (2), with explana-
tory variables Xi;1=working capital/total assets, Xi;2=retained earnings/total
assets, Xi;3=earnings before interest and taxes/total assets, Xi;4=market value
of equity/book value of total assets, and Xi;5=sales/total assets. After elimi-
nating missing observations, the remaining sample contains 7012 �rm-years of
data.

4.1.1 Bootstrap Procedure

The experiment is designed to produce bootstrap (repeated sub-sampling) dis-
tributions of the utility realized by di¤erent decision makers (utility functions)
acting on the probabilities estimated using di¤erent possible score functions
(rules of best �t). These distributions are then compared to assess how well
the competing estimation criteria perform relative to the economic ends of two
di¤erent classes of decision makers.
The bootstrap routine (repeated many times) is to draw a random sub-

sample containing n = 500 �rm-years of data from the 7012 lines of data avail-
able, and then �t the logistic regression model to this sample according to dif-
ferent possible score (utility) functions. Sampling is with replacement, although

14This data was kindly made available by Stewart Jones, and is a subset of that used in
Jones and Hensher (2004).
15Although Altman (1968) uses discriminate analysis rather than logistic regression, the

variables employed are still of the same relevance.
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this makes no di¤erence to the results.
The �rst score function applied is the log score, implicit within MLE. The

resulting estimates are the conventional MLE estimates, the same as those ob-
tained with standard software packages. The second score function is one derived
by Jose et al. (2008, p.????) and based on decision making under a quasi-linear
exponential utility function. Quasi-linear utility functions are widely employed
in the micro-economics literature as a way to represent the innate consumption-
versus-investment preferences of typical decision makers (e.g. see ref).
To capture the aggregate utility achieved by a decision maker acting on a

set of probability estimates p = fp1; p2; ::: ; png, a score function will generally
involve not only the decision maker�s probabilities pi, but also the corresponding
market probabilities q = fq1; q2; ::: ; qng. The one obvious exception to this
generalization arises under log utility, where, as apparent in equation (11) above,
the "best" available set of estimates p is that with the highest sum of log scores
(log likelihood) regardless of q. This is clearly an important practical advantage
of MLE.
For a binary event, Yi 2 f0; 1g, the quasi-linear exponential utility score

function, taken from Jose et al. (2008), is

s(pi ; qi; Yi) = 1�
�
�i
�i

�
+ Eqi

�
log

�
�i
�i

��
(12)

= 1�
�
qi
pi

�Yi �1� qi
1� pi

�1�Yi
+ qi log

�
qi
pi

�
+ (1� qi) log

�
1� qi
1� pi

�
;

where Eqi [log (�i=�i)] represents the market�s expectation in trial i of the dif-
ference between its own log score, log(�i), and that of an investor whose score in
that trial is log(�i). To implement this score function, the market probability
qi of bankruptcy (Yi = 1) for each �rm i is set equal to the overall observed
frequency of bankruptcy across the 7012 observations in the data set, leaving
qi = 0:031945 for all i. This is a convenient assumption, su¢ cient for the sake of
exposition, however it may also be treated as an implicit reality check, since any
reasonable model should yield positive betting returns to a rational investor (of
whatever utility function) against such an uninformed (indiscriminate), albeit
perfectly well calibrated, market or market maker.
The equivalent of L(Y j�) or (11) under the score function (12) is

S(Y j�) = n�
nX
i

�
�i
�i

�
+

nX
i

Eqi

�
log

�
�i
�i

��
; (13)

This is a measure of the total utility gained by the investor from betting upon
the vector of probabilities p = fp1; p2; ::: ; png, in the same way as the log
likelihood L(Y j�) captures the aggregate increase in utility to a log utility
investor. Corresponding functions could be derived for investors with other
utility functions in the broad class described by Jose et al. (2008), although
these may not be easy to optimize.
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It will assist if we denote the probabilities estimated by maximizing (4) as
pmle, and those obtained by maximizing (13) as pexp. The following results were
obtained by repeating the bootstrap procedure B = 2000 times. In each repeat,
the logistic regression model was estimated by optimizing (4) and then (13),
so as to produce the model parameter estimates �mle and �exp that perform
best according to these two criteria respectively. The optimization procedure
employed is the standard Newton-Raphson method within Mathematica.
Before seeing these estimates, there is no guarantee that these two estimators

will produce dissimilar (and thus practically distinct) probabilities. In trying to
anticipate whether the estimates might di¤er, there are two factors to consider.
The �rst is whether the X variables employed are jointly informative enough
to separate the two groups of �rm-years (bankrupt and not-bankrupt). If on
the whole these are not good discriminators, then both estimation criteria will
tend to produce probabilities around 0.5, whatever the score function, since the
estimated parameters � will all be near zero.
The second factor, more related to the content of this paper, is whether the

rival score functions reward "di¤erent" probabilities disparately, and, if so, what
"types" of probabilities pi (e.g. bold or conservative) will emerge within pmle

and pexp respectively. Figure 1 compares the log and exponential probability
score functions, (1) and (12).

Insert Figure 1 about here.

The obvious di¤erence between these is that (12), with constant market
probability of qi = 0:0321945, implying �i = 0:0321945 (�i = 0:968055) for
a bankrupt (not bankrupt) �rm, rewards extreme probabilities - when they
turn out to be "right" - relatively much more generously than the log score
(1). That is, probabilities pi extremely close to one (zero) for a bankrupt (not
bankrupt) �rm yield very large positive scores under (12), relative to the rewards
under that score function for somewhat "less correct" probabilities, indicating
that an investor with the exponential utility function underpinning (12) obtains
relatively massive utility from such "recklessly bold", yet ultimately correct,
predictions. Given that such predictions are of so much bene�t under this utility
function, it seems likely that the exponential rule-of-best-�t (13) will produce
bolder (nearer 0 or 1) probabilities than the MLE rule (4), provided of course
that the explanatory variables X are su¢ ciently informative enough to allow
this level of discernment (without overly frequent prediction errors). Results
displayed below con�rm this suspicion.

4.1.2 Results

The �rst set of results presented in Figures 2 and 3 suggest that the two sets
of estimates di¤er considerably. Figure 1 shows the di¤erence L(Y j�mle) �
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L(Y j�exp), and thus represents the added log utility that would have been ob-
tained by betting (within sample) on the MLE estimates �mle rather than on
�exp. Note that, by de�nition, this di¤erence must always be positive. Other-
wise the MLE optimization procedure must have failed.

Figures 2 and 3 about here.

To give some idea in money terms of what is found here, a di¤erence in the
log likelihood functions of 20[100] corresponds to a wealth multiple of exp(20) =
4:8517E + 08 [exp(100) = 2:6881E + 43]. Thus, if the di¤erence is 20 then the
MLE parameters would have produced, after completion of 500 trials (bets),
a multiple of 4.8175E+08 times the ending wealth (to a log utility investor)
relative to that produced under �exp. This seems an astonishingly large return
factor, but is achieved with the addition of just 4.0811% to the geometric average
investment return per trial.
Figure 2 shows the same bene�cial e¤ect for the exponential utility in-

vestor. His incremental utility from betting (within-sample) on the estimator
matched to his utility function, rather than on the MLE estimator, S(Y j�exp)�
S(Y j�mle), is also, in general, very pronounced. Again, this di¤erence should
be positive in every bootstrap repeat.
The results above show that, within-sample, the two sets of probabilities are

di¤erent, at least in the sense that they imply very di¤erent economic outcomes.
To examine whether there is any obvious di¤erence in the appearance of pmle

and pexp, Figures 4 and 5 represent frequency histograms of the associated
vectors �mle and �exp, where in each case vi is obtained from pi according to
(5). When looking at these two distributions, remember that ideally all the vi
should equal one, as vi is the estimated probability of the outcome (bankrupt or
not bankrupt) that indeed occurred in �rm-year i. Each distribution represents
a histogram of 2000� 500 = 1; 000; 000 (T � n) probabilities.
Note that the two distributions could each have been partitioned by con-

ditioning on the result Yi.16 It is often informative to look at the conditional
distributions of the pi under Yi = 1 and then separately under Yi = 0. In our
case, however, there is no conceptual di¤erence between the two states of na-
ture, since the loss function is the same either way, and is simply a function of
the di¤erence between vi and �i.17 The role of the market probability �i can
be seen in the respective loss functions, namely (12) under log utility and (13)
under exponential utility.

16Note that this avoids all the usual issues of conventional discrete loss functions, where it
is assumed that for any pi above some threshold or "critical" probability of bankruptcy, the
decision maker bets on bankruptcy (e.g. sells the stock short) and either wins if the �rm goes
bankrupt, or losses if it does not (thus making a "Type 2" error, since betting on solvency
produces a bigger and thus "Type 1" loss when the �rm goes bankrupt).
17This would not be so if the decision problem was not symmetric, as for example when the

market is incomplete and allows betting only against bankruptcy, not for it.
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Figures 4 and 5 about here.

The di¤erence in the shapes of the two distributions is clearly evident. Al-
though the maximum likelihood estimates are more tightly distributed near one,
the exponential utility estimates exhibit many more probabilities of almost ex-
actly one. The weakness of this estimator is that it also generates far more
probabilities well away from one, and a good many very near zero, constitut-
ing the worst possible prediction error both in terms of accuracy and economic
consequence.
On balance, it is hard to say which distribution is better in any objective

sense. Rather, all that can be said is that a log utility decision maker would
have done better by using �mle probabilities, and an exponential utility decision
maker would have been better served by �exp. This is simply a restatement of
what is necessitated by the two estimation rules.
The real issue is whether the bene�ts of user-oriented goodness-of-�t crite-

ria remain when bets are made out-of-sample. That is, does a decision maker
with a utility function other than log, obtain greater expected utility from future
bets based on "customized probabilities" produced by the model (�) that would
have made him most money historically (by acting on his utility function)? In
principle, it would seem that so long as that data (estimation sample) is su¢ -
ciently representative of future trials, then past success should be maintained
out-of-sample (over future trials).
This does not appear to hold true in our experiment. Rather, the MLE esti-

mates based on a sub-sample ("training sample") of 500 random observations,
�mle, are seen to generate higher expected utility over a newly drawn random
sample of 500 observations than the EXP estimates, �exp, regardless of whether
the investor has log or exponential utility.
This can be seen in Figures 6 and 7. Figure 6 reveals the incremental utility

that the investor gains out-of-sample by betting with �mle rather than �exp.
The average gain in either monetary or utility terms is immense and there is no
indication that the log utility user should depart from MLE. In just a very small
percentage of repeats, the EXP estimates, �exp, outperform �mle. This kind
of reversal is to be expected sometimes, since chance will occasionally generate
probabilities that happen to coincide closely with empirical outcomes, under
any plausible (or even implausible) estimation rule.

Figures 6 and 7 about here.

Supporting MLE as a "general purpose" estimation rule, the results in Figure
7 show that the same great advantage of �mle over �exp remains even for the
class of investor whose utility function is used to generate �exp. Note that
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Figure 7 is truncated in that all negative net utility gains <10,000 are set in the
-9900 to -10,000 bin. This is for ease of presentation.
The problem apparent in Figure 7 is that the model, when �tted according

to the exponential score, seems to be "over-trained" by a utility function that
almost pathologically rewards very extreme probabilities (when these are right).
To generate such probabilities in-sample, the model coe¢ cients are pushed to
levels that produce many similarly bold estimates, pi, some very near 0 or 1,
out-of-sample. Many of these probabilities turn out to be categorically "wrong",
in the sense that jpi � Yij � 1, thus bringing about relatively frequent colossal
losses that demolish the overall pro�tability of those estimates over the 500 trials
out-of-sample.
The results shown are in fact worse than they appear. In an attempt to

improve the performance of �exp, any probability estimate within � = 0:0001
of either 1 or 0 was truncated to 0.9999 or 0.0001. This caused signi�cant
improvement but nowhere near enough to overcome the advantage of �mle over
�exp, under either utility function. The same is true even with � = 0:01, which
is about as large a truncation � as seems reasonable in this application (where
it would seem sensible that at least some �rms in some years have less than 1%
chance of going bankrupt).

To be continued.....

5 Conclusion
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